

Bst II DNA Polymerase (Large Fragment, Glycerol Free)

REF: EG23102S

Storage Condition

-20°C

Components

Component	Amount
Bst II DNA Polymerase (Large Fragment, Glycerol Free) (8 U/µI)	200 µl
10× Bst II Reaction Buffer	1 ml
MgSO ₄ (100 mM)	1 ml

Description

Bst II DNA Polymerase is an *in silico* designed homologue of Bst DNA Polymerase, Large Fragment and expressed in *E. coli*. Bst II DNA Polymerase contains $5'\rightarrow 3'$ DNA polymerase activity and strong strand displacement activity but lacks $5'\rightarrow 3'$ exonuclease activity. It is ideal for isothermal applications such as LAMP、RCA、HDA with an optimum of 65° C . Bst II DNA Polymerase displays improved amplification speed, yield, salt tolerance and thermostability compared to wild-type Bst DNA Polymerase, Large Fragment.

This product is glycerol-free and can be used for the preparation of various lyophilized reagents. Avoid repeated freeze-thaw.

Definition of Activity Unit

One unit is defined as the amount of enzyme that will incorporate 10 nmol of dNTP into acid insoluble material in 30 minutes at 65°C .

Heat Inactivation

Incubation at 85°C for 5 minutes.

Quality Control Assays

Protein Purity

The enzyme is $\geq 95\%$ pure as determined by SDS-PAGE analysis using Coomassie Blue staining.

Endonuclease Activity

A 25 μ I reaction containing 200 ng of supercoiled plasmid and 40 U of Bst II DNA Polymerase incubated for 4 hours at 37°C results in <10% conversion to the nicked or linearized form as determined by agarose gel electrophoresis.

Non-specific Nuclease Activity

A 25 μ I reaction containing 15 ng of dsDNA fragments and 40 U of Bst II DNA Polymerase incubated for 16 hours at 37 $\,^{\circ}$ C results in no detectable degradation of the dsDNA fragments as determined by agarose gel electrophoresis.

RNase Activity

A 10 μ I reaction containing 500 ng of RNA and 40 U of Bst II DNA Polymerase incubated for 1 hours at 37 °C results in >90% of the substrate RNA remains intact as determined by agarose.

Residual Host DNA

The product was tested by TaqMan qPCR with primers specific for the *E.coli* 16S rDNA, and the results show that the *E.coli* genome residues less than 10 copies.

Protocol

Taking the LAMP reaction as an example

- 1. Using the online tool http://primerexplorer.jp/lampv5e/index.html to design primers.
- 2. Prepare the following reaction mixture on ice. It is recommended to prepare the reagents and template in separate areas, and add the template at last.

Reagent	Amount	Final Concentration
10× Bst II Reaction Buffer	2.5 μΙ	1×
MgSO ₄ (100 mM)	1.5 µl	6 mM (8 mM total) ^a
dNTP Mix (10 mM each)	3.5 µl	1.4 mM each
dUTP (10 mM) (Optional) ^b	1.5 µl	0.6 mM
HL-Uracil DNA Glycosylase (1 U/μl) (Optional) ^b	1 μΙ	0.04 U/µl
FIP/BIP Primers (20 μM) ^c	2 μl each	1.6 µM each
F3/B3 Primers (20 μM) ^c	0.25 μl each	0.2 µM each
LoopF/LoopB Primers (20 μM) (Optional) ^c	1 μl each	0.8 μM each
Bst II DNA Polymerase (Large Fragment, Glycerol Free) (8 U/µI) ^d	1 µI	0.32 U/µI
Template DNA	1~5 µl	>10 copies/rxn
ddH_2O	To 25 µl	

- a. The Bst Reaction Buffer already contains 2 mM MgSO₄, the final concentration of Mg²⁺ can be adjusted between 4~10 mM.
- b. The LAMP reaction is very senstive and can be easily contaminated by aerosols of residual amplfication products. To elminate this contamination, heatlabile HL-Uracil DNA Glycosylase can be used in combination with dUTP (assuming dUTP was used in the previous amplification).
- c. A small amount of primer can be added, and it can be pre-mixed into a primer premix solution.
- d. The final concentration of Bst II DNA Polymerase (Large Fragment, Glycerol Free) can be adjusted between 0.08~0.32 U/µl.

*dNTP mix (REF: EG20907), dUTP (REF: EG20905) and HL-Uracil DNA Glycosylase (REF: EG22906) can be used with this product.

- 3. Gently vortex or briefly mix by shaking, then collect the mixture at the bottom of the tube by brief centrifugation.
- 4. Please react according to the following program:

Step	Temperature	Time
Eliminating residual pollution (Optional)	25°C	5~10 min
LAMP amplification	60~65°C	30~60 min
Thermal inactivation	85 ℃	5 min

5. Use agarose gel electrophoresis or fluorescent dyes to detect the products.